喜报 | 工作室又一成果发表(王硕博士)

点击次数:次 日期:2026-02-11

当前,以正交胶合木(CLT)为代表的现代木结构虽应用广泛,但其核心依赖合成胶粘剂,导致产品在生命周期结束后难以回收,并存在挥发性有机化合物排放的潜在风险。另一方面,采用金属连接件的无胶体系(如钉连接木)则引入了热桥效应,恶化建筑保温性能,且金属本身的腐蚀与回收同样存在问题。因此,发展一种完全无胶、无金属的连接技术,成为实现木结构真正可持续性的关键挑战。随着木材改性技术的进步,高强度的致密木制紧固件(木钉)成为一种富有前景的解决方案。它不仅避免了胶粘剂的环境负担,其热物理性能与木材基体接近,能减少热桥,并且作为生物基材料更易于在报废时处理或循环利用。基于这一背景,南京林业大学阙泽利木结构工作室成员王硕博士为骨干的团队提出“Hysteretic response and analytical modeling of a novel  adhesive-free Wooden-Nail Cross-Laminated Timber (WNCLT)  shear wall”的木钉正交胶合木(WNCLT)系统,旨在探索一种兼具环境友好性与可靠结构性能的新体系,相关研究成果近期发表在《Journal of Building Engineering》(工程技术领域TOP期刊,https://doi.org/10.1016/j.jobe.2026.115474)。该研究成果得到了国家自然科学基金(Grant No. 32571974)等项目的资助

论文构建了一套系统的实验与理论分析框架。实验部分,研究选取三层挪威云杉板,采用正交组坯,并首次系统性地将木钉连接密度(分为单钉连接的S型和双钉连接的D型)与木钉插入角度(0°垂直插入和30°斜向插入)作为核心变量,设计了四类共八个足尺剪力墙试件进行对比。加载制度严格遵循国际标准,先进行准静态单调加载以确定特征位移参数,随后进行多级循环加载,以模拟地震等往复作用。测试中采用了全面的传感器网络,包括线性位移传感器和拉线传感器,精确测量墙体整体位移、层间滑移以及基底抬升等多种变形分量。理论分析部分,研究基于实验结果,揭示了WNCLT墙体以面内剪切变形为主的耦合变形机制,并创新性地将针对轻型木框架的Sugiyama理论模型进行拓展,通过考虑木钉的群组效应、不同应力状态(纯剪、压-剪、拉-剪)下的承载力公式,建立了适用于WNCLT体系的简化侧向承载力预测模型。

论文得出了一系列具体且具有指导意义的发现。首先,WNCLT墙体在循环荷载下表现出显著的捏缩效应和承载力不对称性,这主要源于机械连接的累积损伤、层间界面滑移以及金属连接件的包辛格效应。其次,墙体的变形机制是摇摆变形与面内剪切变形的耦合,其中剪切变形贡献了超过76%的总侧移。破坏模式高度依赖于连接密度:S型墙因连接点较少,木钉自身发生剪切断裂并引发木材层板大面积脱层;而D型墙因连接紧密,剪力更有效地传递至基底,最终导致金属连接件中的螺钉发生剪切破坏。再者,性能参数分析表明,增加木钉密度能显著提升墙体的初始刚度、极限承载力和能量耗散能力,其中双钉斜插(D-30°)配置的性能提升最为综合。刚度演化呈现三阶段特征,揭示了木钉弹性、层间摩擦与金属件塑性在不同位移阶段对系统刚度的动态贡献。最后,所发展的简化分析模型能够较好地预测各类型墙体的侧向承载力与破坏模式,验证了其工程应用潜力。综上所述,WNCLT系统成功验证了完全基于生物基材料构建可持续剪力墙的可行性。尽管其初始刚度目前低于传统CLT,但其展现的延性变形能力和能量耗散机制,使其特别适用于对抗震延性有要求的地区。未来的研究可聚焦于木钉几何与布置的进一步优化,以及探索WNCLT与高性能CLT的混合使用,以在经济性、可持续性和结构性能之间取得最佳平衡。

      文章信息:Shuo Wang, Fanxu Kong, Panpan Ma, Chenyang Jin, Feibin Wang, Zeli Que, Kohei Komatsu,Hysteretic response and analytical modeling of a novel adhesive-free Wooden-Nail Cross-Laminated Timber (WNCLT) shear wall,Journal of Building Engineering,Volume 120,2026,115474,ISSN 2352-7102,

https://doi.org/10.1016/j.jobe.2026.115474.(https://www.sciencedirect.com/science/article/pii/S2352710226002950)

      英文摘要:The growing emphasis on sustainable construction has established Cross-Laminated Timber (CLT) as a cornerstone of modern timber structures. However, its dependence on adhesives raises environmental and recyclability concerns. This study proposes an adhesive-free Wooden-Nail Cross-Laminated Timber (WNCLT) system utilizing high-strength wooden nails and investigates its hysteretic behavior under cyclic loading. Experimental and analytical studies were conducted on three-layer spruce WNCLT shear walls, examining the effects of nail connection density (single-nail S-type and double-nail D-type) and insertion angle (0° and 30°) on lateral resistance, stiffness, deformation, and energy dissipation capacity. Results demonstrate that wall deformation is governed by a rocking-shear coupling mechanism, with shear deformation contributing over 76 % of the total displacement. Inclined nail insertion activated withdrawal resistance and optimized shear transfer, particularly in D-type configurations, enhancing lateral resistance approximately 19 % to 20 %, stiffness by 57 % to 81 %, and energy dissipation capacity by up to 258 % compared to their vertical (0°) counterparts. The tension-shear coupling mechanism effectively suppressed strength degradation and improved energy dissipation. Furthermore, a simplified analytical model was developed to predict wall capacity and failure modes, showing good agreement with experimental results. This study provides both experimental evidence and theoretical guidance for developing sustainable, adhesive-free, and metal-free engineered wood structures.

     全文链接:26-JOBE-王硕